GANimator

GANimator

Overview

Here we provide guidelines for training and evaluating the re-implementation of the GANimator model in moai, as well as for generating the motion features used as input to the model. The original implementation can be found here.

Commands

The documentation is split into 3 sections briefly discussing the configurations behind each of the following commands:

Data Preprocess

Convert the available BVH animation file into motion features:

python -m moai run test /path/to/ganimator/conf/bvh2npz/main.yaml --config-dir ./conf bvh_filename=%input_file_name% export_filename=%choose_a_name%

Train GANimator

Train GANimator using the converted motion features:

python -m moai run fit /path/to/ganimator/conf/run/main.yaml --config-dir ./conf npz_filename=%input_npz_file_name%

Evaluate GANimator

Evaluate GANimator on the predefined metrics:

python -m moai run test /path/to/ganimator/conf/run/main.yaml --config-dir ./conf npz_filename=%input_npz_file_name% model_ckpt=%path/to/trained/GANimator/checkpoint.ckpt% +mdm_ckpt=%path/to/SinMDM/t2m/text_mot_match/model/finest.tar%

Alternativelly, for generating new motions with a trained GANimator without the need for metrics, run the following command:

python -m moai run test /path/to/ganimator/conf/run/main.yaml --config-dir ./conf model_ckpt=%path/to/trained/GANimator/checkpoint.ckpt% +mdm_ckpt=%path/to/SinMDM/t2m/text_mot_match/model/finest.tar% +out_name=%exported_file_name% +export_dir=%path/to/generated/motions%

Contents

For more details about each step please select the corresponding card below:

Last updated on