Skip to main content
  1. Papers/

Surface-Aligned-NeRF

Surface-Aligned Neural Radiance Fields for Controllable 3D Human Synthesis
#

Tianhan Xu, Yasuhiro Fujita, Eiichi Matsumoto

NeRF
SMPL
SDF
CVPR 2022
pfnet-research/surface-aligned-nerf

Python
65
4

Abstract
#

We propose a new method for reconstructing controllable implicit 3D human models from sparse multi-view RGB videos. Our method defines the neural scene representation on the mesh surface points and signed distances from the surface of a human body mesh. We identify an indistinguishability issue that arises when a point in 3D space is mapped to its nearest surface point on a mesh for learning surface-aligned neural scene representation. To address this issue, we propose projecting a point onto a mesh surface using a barycentric interpolation with modified vertex normals. Experiments with the ZJU-MoCap and Human3.6M datasets show that our approach achieves a higher quality in a novel-view and novel-pose synthesis than existing methods. We also demonstrate that our method easily supports the control of body shape and clothes
Paper

Approach
#

Surface Aligned NeRF overview
Surface Aligned NeRF overview.

Results
#

Data
#

Comparisons
#

Papers Published @ 2022 - This article is part of a series.
Part 16: This Article